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MODEL OF SPONTANEOUS CRYSTALLIZATION OF A THIN MELTED LAYER

BROUGHT INTO CONTACT WITH A MASSIVE SUBSTRATE

UDC 537.525.1:621.793.7A. I. Fedorchenko and A. A. Chernov

A model of spontaneous crystallization of a thin melted metal layer brought into contact with a mas-
sive substrate is proposed. With invoking the Kolmogorov composite crystallization theory, the model
allows one to predict the size distribution of crystallites across the layer, which provides a possibility
of controlling the microstructure of the solidifying layer through a proper choice of substrates.

Introduction. Considerable recent attention has been focused on the development of new production
methods for nanocrystalline materials (NM) and on studying their properties [1, 2]. The interest in this research
field was stimulated by some specific properties of the nanocrystalline state, not displayed by any other materials.
For instance, a decrease in the grain size to nanometer values was found to increase the hardness and yield strength
of NM by a factor of 4–5 [2, 3].

Nowadays, powder and film technologies are among the main methods used to produce NM. Powdered
NM normally contain large pores that largely deteriorate the properties of materials to be synthesized. The film
technologies, which include quenching of thin melted layers, are free of this drawback. However, whereas the
grain size is pre-determined by the dispersion of the powder used and the grain-size spectrum is rather uniform in
compacting ultra-fine powders, the microstructure of layers undergoing solidification in film technologies depends
on process regime parameters and on the properties of melt and substrate materials. It is known that, at high
cooling rates (greater than 103 K/sec), the homogeneous-nucleation condition holds for pure melts; hence, to
predict the microstructure of the solidified layer, one has to solve, using the homogeneous-nucleation and composite
crystallization theory, a conjugate problem about conductive heat transfer between the melted layer and the massive
substrate. The present work was aimed at solving this problem.

Formulation of the Problem. We consider spontaneous crystallization of a thin melted metal layer
brought into contact with a massive substrate. The z axis with the origin at the free surface of the melted film is
directed inside the substrate. In this case, the boundary-value problem may be formulated as follows:
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Here ρ, c, and λ are the density, specific heat capacity, and thermal conductivity, respectively, Q = ρpLp dη/dt is
the amount of heat released during crystallization by spontaneously formed nuclei, Lp is the specific melting heat
of the melt substance, and η is the mass fraction of crystallinity in the melt; the subscripts p and b refer to the melt
and substrate materials, respectively.

We formulate the following initial and boundary conditions:
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where T 0
p and T 0

b are the initial temperature of the melt and that of the substrate, respectively, and hp is the
thickness of the melted layer.

The mass fraction of crystallinity in the melt η is given by the Kolmogorov theory of composite crystallization
kinetics [4]:

η(t) =
V (t)
V

= 1− exp

(
−

t∫
0

J(x)Vc(t− x) dx

)
. (3)

Here V is the initial volume, V (t) is the volume of the substance that has already solidified, J = J(∆T ) is the

nucleation frequency, Vc(t;x) =
4π
3

( t∫
x

vc(x̃) dx̃
)3

is the volume of a growing center that appeared in the melt

at the moment t = x, vc = K∆T is the crystallite growth rate, K is a kinetic factor, ∆T = Tm − T is the melt
overcooling, and Tm is the melting point of the melt substance. We determine the homogeneous nucleation frequency
as described in [5]:
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Here Na is the total number of atoms (molecules) per unit volume, C = (2da/h)(σkBT )1/2, da is the atomic
diameter, kB is the Boltzmann constant, h is the Planck constant, σ is the surface tension at the melt–crystal
interface, and ∆Hf is the specific (per unit volume) phase-transition heat.

The total number Nc of crystallization centers formed during the time t in a unit volume is given by the
expression [4]

Nc(t) =

t∫
0

J(x)(1− η(x)) dx. (4)

We introduce the dimensionless variables θ = T/T 0
p , ζ = z/hp, and τ = apt/h

2
p, where a is the thermal

diffusivity. Then, problem (1), (2) acquires the following form:
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Here f(τ, ζ) = Ku θm dη/dτ , Ku = Lp/(cpTm) is the Kutateladze criterion, θm = Tm/T
0
p , θ0

b = T 0
b /T

0
p , ab,p = ab/ap,

and λb,p = λb/λp.
System (5)–(9), together with expressions (3) and (4), uniquely describes the crystallization kinetics and

allows one to predict the microstructure of the layer after its complete solidification, i.e., find the distribution of
the mean crystallite size over the layer thickness. This system can be only solved numerically.

Numerical Algorithm and Results. To construct a suitable finite-difference scheme, we use the control-
volume approach. We divide the time interval [0, 1] into M , and the space interval [0, 1] into N sublayers. We
choose a substrate cross section ζb, in which condition (9) is imposed, such that the heat wave has not yet reached
this cross section for the total solidification time of the melt: ζb − 1 � √ab,pτcr, where τcr = aptcr/h

2
p (tcr is the

total crystallization time of the melt). Assuming the mesh widths along the coordinate ζ in the substrate and in
the melt to be identical, we obtain the relation L/N � √ab,pτcr, where L is the total number of nodes along ζ in
the substrate. The integer index i refers to the center of the volume, while the fractional indices i± 1/2 to its faces.
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Fig. 1. Temperature-field dynamics in melted aluminum on an aluminum substrate in the absence of
solidification for τ = 0.02 (1), 1.46 (2), and 2.32 (3): the solid curves refer to the analytical solution and
the points refer to the numerical simulation results.

Integrating Eqs. (5) and (6) over the spatial–time volume (ζi−1/2, ζi+1/2)(τj , τj+1) with allowance for their
respective boundary conditions (8) and (9), we have the following system of finite-difference equations:

— for internal volumes,
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j
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(θj+1
b i − θ

j
b i)M − ab,p(θ

j
b i+1 − 2θjb i + θjb i−1)N2 = 0 (i = N + 2, N + 3, . . . , N + L− 1);

— for near-boundary volumes,
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The initial conditions (7) acquire the form θ0
p i = 1, θ0

pN+1/2 = 1, θ0
b i = θ0

b , and θ0
bN+1/2 = θ0

b . It can be easily
shown that, for conjugation conditions (8) to be automatically satisfied, the following conditions must be fulfilled:

θjpN+1/2 = θjbN+1/2 =
θjpN + λb,pθ

j
bN+1

1 + λb,p
(j = 1, 2, . . . ,M).

The fact that crystallization in different cross sections proceeds at different overcoolings constitutes the main
distinctive feature of the problem. For this reason, both the mass fraction of crystallinity and the total number
of centers formed depend parametrically on ζ. If the cooling rate (and the nucleation frequency) is high, then the
nucleation centers formed at the initial time rapidly cease the overcooling, thus diminishing the nucleation frequency,
and the total number of nucleation centers remains almost unchanged up to the moment at which the layer gets
completely solidified. Knowing the total number Nci(tcr) of crystallization centers formed in the ith sublayer by the
moment of complete solidification of the whole melt layer, one can determine the mean crystallite radius ri in the
given sublayer by the formula ri = (3/(4πNci(tcr)))1/3 and, in this manner, find the size distribution function r(ζ)
of the crystallites across the whole layer.

To calculate the integrals in formulas (3) and (4), we used the rectangular formula at each integration step
over time. The smallest discretization number of the melted layer Nmin was chosen such that the results were
identical at N = 2Nmin and N = Nmin. This condition was fulfilled at N = 10–20. The values of L varied
within the range of (50–100)N . The time step was determined from the stability condition for explicit schemes
N2/M < 1/2 [6]. This condition was reliably fulfilled at M = 1000.

The computations were carried out for aluminum and copper melted layers on various substrates. The initial
melt temperature in all cases was set identical to the melting point of the melt substance (T 0

p = Tm) and the initial
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TABLE 1

Material Tm,
K

ρ,
kg/m3

λ,
W/(m ·K)

c,
J/(kg ·K)

K,
m/(sec ·K)

∆Hf , 109

J/m3
σ,

J/m2
da, 10−10

m
U , 10−20

J/mole

Al 933 2700 209 880 0.049 0.975 0.093 2.67 4.15
Cu 1356 8930 384 390 0.02 1.80 0.18 2.38 6.60
Fe 1530 7880 74 45 — — — — —

Fig. 2. Temperature-field dynamics during crystallization: (a) aluminum melt on an aluminum substrate for
τ = 0.02 (1), 1.46 (2), and 2.32 (3); (b) aluminum melt on an iron substrate for τ = 0.02 (1), 5.65 (2), and
6.71 (3); (c) copper melt on a copper substrate τ = 0.04 (1), 1.37 (2), and 1.82 (3).

substrate temperature was T 0
b = 300 K. The characteristics of substances used in the present study are indicated

in Table 1. The values of the kinetic factor K were borrowed from [7].
The results of a test numerical study of conjugate heat transfer between the melted layer and the substrate

in the absence of crystallization are depicted by Fig. 1. These results are seen to well agree with the analytical
solution [8].

Figure 2a–c shows the simulation data that illustrate the temperature-field dynamics in aluminum melts on
aluminum and iron substrates and in copper melts on a copper substrate, respectively. It is seen that the intense heat
release due to the increase in the mass fraction of crystallinity causes the temperature fields to change dramatically.
For instance, under conditions without crystallization, the temperature at the melt–substrate interface decreases
to 0.58 by the moment t = 1.46 (see Fig. 1), and it increases to 0.72 by the same time during crystallization
(see Fig. 2a). Such a profound increase in temperature is caused by high values of the nucleation frequency and
kinetic constant of aluminum. It is just this property of aluminum that explains its aptitude to crystallization
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Fig. 3. The dependence of the mass fraction of crystallinity in the aluminum melt in its various cross sections on
aluminum substrate (a) and iron substrate (b) for z = 0.85 (1), 0.65 (2), 0.45 (3), 0.25 (4), and 0.05 (5).

Fig. 4. Total solidification time of a 1 µm-thick aluminum-melt layer versus relative thermal activity
parameter Kε on copper (1), silver (2), gold (3), aluminum (4), and iron (5) substrates.

according to the equilibrium mechanism and the fact that amorphous aluminum remains hard to obtain [7]. It is
seen from Fig. 2b that the comparatively low thermal conductivity of the iron substrate makes the overcooling rapidly
decrease and, hence, leads to establishment of solidification conditions close to equilibrium. Unlike aluminum, the
copper melt on a copper substrate crystallizes at very high values of overcooling (see Fig. 2c) caused both by the
high thermal conductivity of the copper substrate and by comparatively low nucleation frequency of the copper
melt.

Figure 3 shows the growth dynamics of the mass fraction of crystallinity in various sections of the aluminum
melt on aluminum and iron substrates. It is seen that, in both cases, a planar crystallization front is immediately
formed near the substrate (in the cross section z = 0.85). In the case of the aluminum substrate, this front remains
planar up to the cross section z = 0.45. In the case of iron substrate, the crystallization front looses its planarity
already in the cross section z = 0.65, since the fraction of crystallinity increases over rather a long time interval,
from t = 1 to t ' 2.5. The latter is related to an intense heat release of the aluminum melt due to the high nucleation
frequency and to the low heat-removal capacity of the iron substrate. Therefore, the duration of solidification of
the aluminum melt layer on the iron substrate is nearly twice that of the same melt on the aluminum substrate.

An examination of solidification of each sublayer allows the following conclusions to be drawn. At the
beginning of the process, the fraction of crystallinity is very small and increases slowly (small number and small
overall surface area of growing crystallites). This time interval τi (see Fig. 3) is called an incubation period. Then,
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Fig. 5 Fig. 6

Fig. 5. Size distribution of crystallites across the solidified aluminum-melt layer (hp = 1 µm) on iron (1), aluminum
(2), and copper (3) substrates.

Fig. 6. Schematic of the size distribution of crystallites across the solidified aluminum-melt layer (hp = 1 µm) on
the aluminum substrate.

the crystallization rate sharply increases and remains unchanged until the volume of the noncrystallized substance
reaches 10–20% of the initial volume. Under these conditions the initial overcooling rapidly diminishes, and the
homogeneous-nucleation frequency accordingly decreases. As a result, the fraction of crystallinity increases more
slowly.

The total crystallization time as a function of the relative thermal activity parameterKε =
√
λpρpcp/(λbρbcb)

is shown in Fig. 4. It follows from these data that the total crystallization time strongly depends on the parame-
ter Kε. For instance, as the parameter Kε increases from 0.6 for the Al–Cu pair to 1.4 for the Al–Fe one, i.e., by a
factor of 2.3; the time required for complete crystallization increases almost by 3.8 times.

The model proposed allowed us to predict the cross-sectional size distribution of crystallites in melt layers.
For a 1 µm-thick aluminum layer on iron, aluminum, or copper substrates, the data obtained are plotted in Fig. 5.
In all the three cases, the largest scatter in the values of r is observed near the substrate, where the overcooling is
most intense and, hence, the nucleation frequency is highest. Since the number density of nucleation centers in this
regions is high, their further growth is arrested by near-by crystallites. As the crystalline mass increases owing to
released latent phase-transition heat, the overcooling decreases, and the nucleation frequency accordingly decreases.
As a consequence, the limiting crystallite size increases. The smallest scatter in r observed for the iron substrate
with low thermal conductivity substantially increases as the parameter Kε decreases. The microcrystalline structure
across the solid layer corresponding to curve 2 of Fig. 5 is shown in Fig. 6. Thus, a proper choice of the substrate
material allows one to precisely control the microstructure of the layer after its solidification in order to ensure
either its sharp inhomogeneity in the case of substrates with high thermal conductivity (curves 2 and 3 in Fig. 5)
or an almost uniform distribution in the case of substrates with low thermal conductivity (curve 1 in Fig. 5).
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